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ABSTRACT:
Carbonate mounds, pockmarks, and acoustic features related to fluid flow 
and/or shallow gas have been recognized on the seafloor in Irish waters (e.g. 
Shannon et al., 2006; Garcia et al., 2014). In this study, data sets comprising 
multibeam bathymetry, high-resolution 3D reflection seismic and sub-bottom 
acoustics have been analysed over about 1306 km2 to investigate fluid flow 
and seepage in the Slyne Basin, offshore west Ireland. Twenty three 
pockmarks (262–720 m diameter and 2–6 m depth) could be identified on the 
multibeam bathymetric data, in water depths ranging of 196–285 m. In 
addition, acoustic turbid zones have been observed on the sub-bottom 
acoustic data (3.5 kHz transceiver), occasionally beneath smaller pockmarks, 
which were not resolved on the multibeam bathymetric data or on the seafloor 
interpreted on the 3D seismic data. This is most likely due to the limited 
resolution of the bathymetric and 3D seismic data sets. In the strata beneath 
the seafloor, more than 1600 paleo-pockmarks (~50–280 m diameter) have 
been identified along an Intra-Late Tertiary horizon (PmH), at 80–100 ms 
(TWT) below the seafloor. Well data was tied with the 3D seismic data for age 
determination of geological unconformities in the Slyne Basin. Various 
attributes were extracted along the PmH surface and deeper surfaces for 
better visualization of the spatial distribution of paleo-pockmarks and fault 
mapping. Pockmarks are abundant at two levels (PmH and seafloor), which 
may reflect distinct multiple phases of fluid seepage in the basin. Near-
distance analysis using the ArcGIS Spatial Analysis tool between the paleo-
pockmarks and faults shows correlation coefficient R2 = 0.64, and 1195 
pockmarks in close vicinity of faults (within 1 km radius). Kilometre-scale 
exhumation and erosion of Mesozoic stratigraphy and faulting occurred 
beneath the Late Tertiary Unconformity (Corcoran & Mecklenburgh, 2005). 
Extensional fault systems that displace the Late Paleozoic and Mesozoic 
succession might have facilitated vertical migration of reservoir fluids during 
the Cenozoic deformation. Structural activity is likely to be the main control of 
pore fluid mobilization resulting in the formation and distribution of these 
pockmarks. 
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Figure 7: (A) Pockmarks on the seafloor and the Intra-Late 
Tertiary horizon (PmH). Variance attribute extracted along PmH 
surface highlights the presence of abundant paleo-pockmarks. 
Inset box shows morphology and dimension of the seafloor 
pockmark. (B) Mesozoic strata and normal faults truncate below 
the Late Tertiary Unconformity (U/C), which suggest enormous 
uplift and erosion. Paleo-pockmark depressions shown at the 
PmH. Well data was tied with the 3D seismic data for age 
determination of geological unconformities in the Slyne Basin. 
Refer to Figure 4 for location of seismic section. 

Channel systems in shallow depths
Figure 8: Time slice 
of seismic variance 
attribute at -456 ms 
TWT below seafloor 
showing extensive 
channel systems 
(potential sand 
reservoirs for NGH), 
along with buried 
pockmarks which 
are evidences of 
paleo-seepage.  
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EVIDENCES	OF	SHALLOW	GAS	AND	SEEPAGE	IN	OFFSHORE	IRELAND:

Figure 1 (A)TOP: Pockmark clusters are visible in the Malin Deep micro basin. 
Skerryvore Fault is marked a with a black dotted line (Szpak et al., 2012).

Figure 1 (B)TOP RIGHT: Gas anomalies in the central part of the Malin basin as 
observed in the electromagnetic data (EM) and 3 parallel shallow seismic lines 
(Garcia et al., 2014). Gas accumulation facies (G) are present in the three parallel 
lines and coincide with the edges of the EM gassy region (C). SP is a small pockmark. 
The bright reflector (BR) is interpreted as a magmatic intrusion.

Illustrations from Szpak et al., (2015): 
Figure 2 (A) TOP RIGHT: Bathymetry of Dunmanus and Bantry Bays with major 
structural features and shallow gas locations. Major fault in this area, the Dunmanus 
Fault crosses just north of the pockmark field with minor Gortavallig Fault branching 
out just 250m north-west from the pockmark field. 
Figure 2 (B) BOTTOM RIGHT: Bathymetry illustrating pockmark clusters D to F and 
individual MBES lines (right panel) with signals ascribed to ascending bubbles in the 
vicinity of the encircled pockmark features. 
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Figure 3: Multibeam bathymetric data of offshore Ireland along with the 
tectonic elements and intrusive bodies. Note the 3D seismic survey area 
(shown in blue box) in the Slyne Basin.

Rockall B
asin

P
o

rc
u

p
in

e
 H

ig
h

Rockall H
igh

Porcupine
Basin

300 kms

SEEPAGE	AT	SEAFLOOR	AND	ACOUSTIC	RELATED	SHALLOW-GAS	INDICATIONS	IN	THE	SUB-SURFACE:
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Figure 4: Sub-bottom acoustic survey lines (purple lines), pockmarks 
interpreted on multibeam bathymetry (seafloor), two well-locations (black 
dots), 3D seismic survey (blue outline) - also shown in Figure 3.
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Figure 5: (1) Complex pockmarks observed on the bathymetric data, and cross-
profile across two of them shown below. (2) Two individual pockmarks separated 
by 500 m, and cross profile across them shown below. Locations of (1) and (2) are 
shown in Figure 4.
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Figure 6: 
Absorption of 
acoustic energy 
by gas-charged 
sediments 
beneath 
pockmark 
results in 
acoustic turbid 
zones. Location 
shown by 3 in 
Figure 4. 
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Figure 7B

FUTURE	WORK:	
a) Analyse spatial corelation between re-activated faults and buried pockmarks.
b) Delineate turbidite channel systems using seismic attribute workflows extracted
along the geological surface.

Near-distance analysis between buried pockmarks and faults 
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Figure 10: Number of pockmarks plotted as a 
function of pockmark–fault distance (m), 
calculated from the near-distance analysis 
algorithm (with ArcGIS Spatial Analyst Tool). 
The near-distance analysis determines the 
shortest distance from one defined feature 
(pockmarks represented by point-feature) to 
another type of feature (fault lineaments 
represented by line-feature). The inset, upper 
right, illustrates this.
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Figure 9: LEFT: Seismic variance map (at -480 ms) illuminating 
extensive turbidite channel systems along with faults. 
RIGHT: Spatial distribution of faults (shown with black lines - 
interpreted using RMS amplitude and Variance attribute maps) 
along with buried pockmarks (red dots). Refer to Figure 7B for 
stratigraphic levels of buried pockmarks, channels, and faults. 

Combined presence of fault conduits and potential source rock 
could be crucial for the formation of pockmarks in Slyne Basin.
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