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1. Introduction

Aim of study

Strategy

CHARACTERISING IAM
UPLIFT & EROSION EVENTS

METHODS

1. EXTENT

e

I
Where? —» Sam pling across 1AM

7] Vertical profile sampling )
Combined
2. TIMING When? Apatite fission track (AFT) data QTQt
— Apatite (U-Th)/He (AHe) modelling
Supported by:
3. MAGNITUDE How much ;l_ - re-interpreting legacy studies

- well stratigraphy/lithology
- seismic studies

Integrating results & regional geology

Main interests:

and mantle plume interactions

1) Provide input data for petroleum system elements risking (see Doré et al., 2002).
2) Improving knowledge of passive margins subsidence/uplift behaviour

3) Exploring the usability and limits of low-temperature thermochronology techniques

2. Samples
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Widespread sampling to identify
regional effects

Suitable
sands

lithologies: intrusives,

Multi-samples per well for vertical
profiles

Single samples in areas with no
wells

76 samples from 15 wells and 8
dredge/dives

Detrital,
45, 59%

" Mixed, 3,
4%

New Sampling (this study)

Vertical profiles in wells

(courtesy of PAD)

Dredge & dive single samples

(courtesy of Ifremer)
Legacy tT studies

AFT in boreholes
(Geotrack reports, papers)

AFT & AHe on seabed samples
(MeBo, dredges)

Same as above +
legacy AFT/VR studies

Cogne et al., 2014 onshore
vertical profiles

Other offshore wells
(O Exploration boreholes

13/03-1 Geosction

A-A"" Interpreted seismic line

Sample Suitability for AFT Studies
(19 samples)
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- Based on the analysis of the first 20
samples: overall very low amount of
usable samples for AFT & AHe studies

poor grain

{broken, too
smally, 25%

sampling mistake, 6%

N

loss during laser-
ablation, 10%

quality

Reasons for Unusable and Average Quality Samples
(16 samples)

low sample weight, 6%

low yield, 44% |

Low yield seems to be preponderant for Eocene
and Lower Albian sands
Broken grains: probably due to jaw crusher &
original drilling process
- Loss during LA: possibly over-polished samples

Recommendations for processing of offshore cutting samples for AFT/AHe studies:

Sample Suitability for AHe Studies
(20 samples)

overly dispersed
ages, 20%

ICP-MS5 data loss, 10%
Only ~50% of samples yielded good
quality apatites for AHe studies
Of these, only ~50% yielded uniform
AHe ages or dispersed ages that are
correlatable to eU

Overall low percentage of

1.
logs to define target depths

for sample with low yield

Sampling: Sample > 500 grams dry cuttings if possible; check both composite and mud/litho

Mineral separation: Slow crushing with many iterations of sieving (to reduce breaking)
Picking: while picking for AHe, select many grains for AFT and align them on tape, particularly

LA-ICP-MS: avoid over polishing in order to ensure that grains are not ejected during LA

usable samples when using
offshore cuttings from legacy
wells, unless coarse igneous
rocks have been drilled

Preliminary LA-ICP-MS AFT & AHe Results,
Offshore West of Ireland

Rémi Rateau?, Claire Ansberque!, Chris Mark?!, David Chew?

I Department of Geology, Trinity College Dublin - Irish Centre for Research in Applied Geosciences

Seismic Section (see location on map in Box 2)

4. Prelimary Results — Well 13/3-1, Donegal Basin & the Irish Offsore Mainland Platform
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¢ Geological Context

Top sample
Carb. tuffaceous sands
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‘ Main mafic intrusion

A F I Re S u Its (LAFT approach: U concentration measured by LA-ICP-MS in TCD (Dublin) following the approach of Chew & Donelick, 2012 and Chew et al., 2014 protocols) 4400- Medium grained (fner st the o) I |
20-50% mafic minerals (harblende alio possibly
13/03-1 Stratigraphic age Depth (m) Temp. Technique Ns  23y/"ca Area(cm?) FTAge (Ma) +20(Ma) #grains p(x’) MTL(um) SE(um) #tracks Dpar ¢l (ppm) 22U (ppm) - e e
Tuff & sand Up. Carboniferous | 307.4+4 320 19°C LAFT (thiS study) 1978 1.12E-01 | 1.24E-03 172.1 8.2 25 <0.01 11.32 2.49 214 1.65 2663 31 B :"i::hlgtle mica, trace pyrite, some calcareous
i - - * * * %k %k
Gabbro Up. Carboniferous | 300+100| 1234 46°C LAFT (this study) 141 7.71E-03 | 1.18E-03 164 14 23 <0.01 12.76 0.73 2 1.71 436 2.13 _g 4450 — ——
EDM (McCulloch, 1993) N/A 183.1 19.2 29 N/A 0 N/A N/A N/A v
o Core — Subhedral, uralized gabbro
* Based on 2 track lengths only - not statistically meaningful Z Cones e oo e e}
** Average value after Changing all negative values to 0 TD 4483 with a high proportion of ore minerals
' A H e Res u Its (U, Th, Sm & He for AHe ages measured by ICP-MS at UCL, London) 4500

Well/Sample Temp. Grain U (ppm) Th (ppm) Sm (ppm) eU (ppm) Th/U (weight) He (nmol/g) Age (Ma) +1c(Ma) Ft Corrected Age (Ma) * 1o (Ma)

1 23.2 67.7 467.8 41.2 2.9 255440.4 50.5 8.3 0.8 66.5 8.3
2 24.4 32.1 835.6 35.7 1.3 323069.1 73.1 20.1 |0.7 97.6 20.1
3 1.9 54.7 382.9 16.5 28.4 14335.0 7.0 0.0 0.7 9.5 0.0
19°C 4 10.5 79.7 270.1 30.4 7.6 174730.8 46.9 49 0.7 67.9 4.9
5 0.7 53.4 210.2 14.2 73.7 24874.3 14.3 0.1 0.7 19.5 0.1
7 54.5 36.2 591.1 65.7 0.7 850683.1 105.1 449 (0.7 160.8 44.9
8 22.2 60.3 462.5 38.5 2.7 213222.9 45.1 6.7 0.6 70.6 6.7
9 25.9 29.1 842.3 36.6 1.1 398174.2 88.0 29.8 |0.7 132.9 29.8
1 2.3 10.9 1350.3 11.1 47 22715.5 15.9 0.4 0.7 23.3 0.4
a6°C 2 2.3 11.2 1399.3 11.4 49 12991.3 8.9 0.1 0.7 13.0 0.1
3 2.1 11.2 1385.5 11.2 5.2 19555.0 13.7 0.3 0.7 20.9 0.3
4 3.0 14.4 1681.4 14.2 4.8 27295.8 15.0 0.4 0.7 21.7 0.4
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Unconstrained pre-
depositonal thermal
history

#1

200000 iterations
Constraints:

AFT ages, 214 lengths,

0 AHe ages

#2 29 AFT ages, 0 lengths, 4 AHe ages
Radiation Damage Model: Flowers et al., 2009
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- Despite an apparent correlation between AHe ages and eU for sample 1, no model has been found yet that can reproduce these ages

- Model 1 on the left is constrained only by AFT ages and track lengths for sample 1 and AFT and AHe ages for sample 2. An unconstrained pre-

- The overall model shows a heating event during the Carboniferous-Permian followed by a long and slow cooling until the present-day.

- This thermal history is not in accordance with the regional stratigraphy and geological history of the area: basin-wide exhumation events are

- Analyses of more grains for each sample and exploration of new thermal models might improve our understanding of this location.

FTD 164 + 14 Ma
U/Pb 311 + 14 Ma

Bottom Sample
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U-Pb dating yield a 311 + 14 Ma (Base Permian) age for this intrusion that was believed to be of Tertiary age according to the interpretation
of the well report. This age is very close to the age of the tuff in sample 1 (307 + 4 Ma). It may be possible that this gabbro and the tuff
belongs to a same Permian volcanic event. More grains from these samples will be analysed soon and may improve the uncertainty
associated with the dating of this intrusion.

Future work on this well:

More grains will be analysed for these 2 samples (~¥80 more for sample 1 and ~100 more for sample 2).
U/Pb ages and/or trace elements geochemistry of grains in sample 1 will be analysed in order to
possibly discriminate 2 families of grains. These could be modelled as 2 different samples.

Constraining the modelling by adding 1-2 temperature-time boxes corresponding to some of the major
exhumation events believed to have affected this area

Reduce the time-temperature search space of the QTQt model

Evaluate the value of the available VR data for this well. Test the effect of adding VR data in the QTQt
modelling.

satisfactorily

depositional thermal history is permitted for sample 1. The results show a moderately good reproducibility of the AFT, AHe ages and MTL for
both samples, however the bimodal distribution of the track lengths for sample 1 is not reproduced at all.

believed to be present at the base of the Cretaceous, at the base of the Eocene and a Neogene cooling event is also often reported; while the
Upper Cretaceous is believed to be a period of sedimentation and burial over most of the area. The thermal anomaly associated with the rifting
of the Rockall Basin is not taken in account as well.

¢ Geological Context seismic sectio

n (see location on map in box 2)

¢ AFT Results

(LAFT approach: [U] measured by LA-ICP-MS in TCD, method of
Chew & Donelick, 2012 and Chew et al., 2014 protocols)

6. Conclusions

¢ CONCLUSIONS

¢ AFT/AHe Result Analyses
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(U, Th, Sm & He for AHe ages measured by ICP-MS at UCL, London)

¢ QTQt Modelling Results

¢ QTQt Parameters

4) Basal gabbro in well 13/03-1 is provisionally dated at 311 + 14 Ma

5) Well 13/03-1 has a set of moderately good quality AFT and AHe
results. Inverse modelling does not match all the results but hints at a
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