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Modelling Summary

Source Rock Synthesis

S Figures 1a and 1b show the broad and more detailed location of the two Pseudo Wells (nominally labelled PW#1 and PW#2) in the Orphan
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. FPB e The main phase of Orphan Basin opening occurred during the Late Jurassic-Early Cretaceous
Blue H-28 Barasway F-66 T R
i : e A connection between the East and West Orphan Basin was established by the Early Cretaceous and possibly earlier.
T L e Avariety of stretching factors are noted across the basin, these will impact heat-flow at time of rifting and subsequently.
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e During the Cretaceous environmental conditions were generally shallow marine but in some grabens deep marine conditions persisted.

e Tectonics resulted in the abundance of horst and graben structures where deep marine sediments were deposited during the Cretaceous.
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e Previous wells drilled across the basin targeted Jurassic source rocks similar to the Jeanne D’Arc Kimmeridgian unit.
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e Datafrom ODP 1276 identifies OAE 2 Cenomanian-Turonian and OAE 1b Aptian-Albian as potentially the best Cretaceous source units
e The possibility of a good quality Barremian source is also considered in addition to these two OAE sources.

e The Cumberland B-55, Blue H-28 and Great Barasway F-66 wells have been modelled using a simple McKenzie heat flow model.

e This enabled calibration of heat-flow history and understanding of variations in this linked to stretching factors.

e Two Pseudo Wells relating to the Cretaceous Fairway (PW#1) and Jurassic Mini Basins (PW#2) have been subsequently modelled.
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e These two Pseudo Wells were modelled using the differing sources and keogen kinetics resulting in a variety of generation histories.
e As well as different kerogen kinetics, a high and low heat-flow history was applied to each Pseudo Well which also affected outcomes.
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In Pseudo Well #1, there was good prospectivity for generation and expulsion from potential sources of the Barremian, OAE 1b and OAE2.

Pseudo Well #2 proved to be more problematical, particularly for generation and expulsion.
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R— e With the high heat flow model, some limited expulsion was indicated but in the low heat flow model there was little prospect generation.

This well is more towards the - This well is the closest to the e The study suggests that the presence of mature, generative Cretaceous source rocks in the Orphan Basin is a viable possibility.

basin centre and experienced af|: - -~ two pseudo wells (Figure 6). A
higher level of heat flux during|]: " . Present Day heat flow of 47.5

VD bekow solid surface (m)

main basin opening (Late Juras-]| . ° mW/m? was obtained (Figures
— b sic — Early Cretaceous) than at]] - 4. 11d and 11e, i.e. similar to Blue
- the basin margins. The Present | “ o H-28). The thermal maturity
Day heat-flow (Figure 11a) is calculated to be 48mW/m?. This is] | data in this well is more difficult to assess (Figure 11f). This may
higher than the values used in the Beicip-Franlab study (see Fig-]| result from drilling fluid contamination or overpressure. As with
ure 7). In Figure 6 the estimated stretching factor for Blue H-28] | the Blue H-28 well a final heat-flow history was established

is 3 to 3.5 but best data calibration (Figure 11c) a [3 factor of 2.5. || using a stretching factor of 2.5 rather than 3 to 3.5.
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